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C O M B U S T I O N  

An integral  equation is obtained for  the nonsteady-s ta te  combustion velocity of a powder. 
It  is shown that the effect of a var iable  tangential s t r eam of gases  on the rate  of burning 
(nonsteady-state erosion) can be calculated in a s imi la r  way as for the change of p re s su re .  
The solution of the equation in l inear  approximation is considered (rate of burning differs 
slightly f rom steady-state) .  

The major i ty  of papers  on the theory of nonsteady-s ta te  combustion of a powder are  based on the idea, 
f i r s t  expressed  by Ya. B. Zel 'dovich [1], concerning the principal role of the iner tness  of a preheated layer  
of the condensed phase (the iner tness  of all p roces ses ,  with the exception of thermal  conductivity in the 
solid powder, can be neglected with good accuracy) .  It is shown in this approximation [2] that nonsteady-  
state p r o c e s s e s  during the combustion of powders can be calculated by solving the heat conductivity equa- 
tion in the condensed phase for a given initial t empera ture  distribution and known relat ions between the 
combustion velocity and the surface tempera ture  on the one hand and the p r e s s u r e  and tempera ture  gradient  
at the surface  on the other  hand. These relat ions are  obtained by scaling the s teady-s ta te  dependence of the 
combustion veloci ty and surface tempera ture  on the p r e s s u r e  and initial t empera tu re  of the powder. In addi- 
tion, ei ther  an explicit p r e s s u r e - t i m e  dependence or  the p re s su re  equation must  be given. 

Almost  all papers  on the theory of nonsteady-s ta te  combustion are devoted to investigating the effect 
of changing p re s su re  on the combustion velocity of the powder. However, other fac tors  must  be taken into 
account s imi lar ly  which affect the combustion velocity through the gas phase.  The most  important  of these 
is the flow rate of gases  tangential to the combustion surface.  It is well known (see, for example, [3]) that 
the flow of gases  over  the surface of the powder can al ter  its rate of combustion. This phenomenon is known 
in the l i te ra ture  under the name of blowing or  e ros ive  combustion. It is obvious that in the ease of a t ime-  
variable flow, the thermal  iner tness  of the solid phase depends on the finite re tardat ion of the combustion 
velocity relat ive to the magnitude of the flow at the instant being considered.  

1. B a s i c  R e l a t i o n s  o f  t h e  T h e o r y  o f  N o n s t e a d y - S t a t e  C o m b u s t i o n  

We shall assume the well-known s teady-s ta te  laws of erosion,  i.e., the dependence of the combustion 
velocity of a fuel u ~ and its surface tempera ture  T1 ~ on the initial t empera tu re  T o and the rate  of erosive 
flOW G ~ : 

u ~ = u ~ (To, G~ TF == TF (To, G ~ (1..1) 

By means of the express ion for  the t empera tu re  gradient  near  the surface  of the powder under s teady-  
state conditions 

fa ~ ~o T o ~ - (  ~ To) (1.2)  

where w. is the t empera tu re  conductivity of the solid phase, the steady~state relat ions (1.1) can be converted 
to the dependence of the velocity of combustion and surface  tempera ture  on the gradient  and rate of eros ive  
flow: 
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u ~ = u? (f~ G~ T o  = T o  (1o, G o) (1.3) 

In the nons teady-s ta te  case ,  when the flow rate is changing, the la t te r  express ions  remain  valid as 
Eq. (1.3) represen ts  the relat ion between quantities which r e fe r  to the iner t ia less  region (the surface of 
the powder and the gas phase are  iner t ia less) .  Therefore,  the superscr ip ts  (degree symbols) defining the 
stat ionari ty can be discarded.  

Similarly,  the o ther  fac tors  which affect the combustion velocity by means of the iner t ia less  com-  
bustion zones can be taken into account (the flow of radiation absorbed wholly in the gas phase at the su r -  
face of the fuel se rves  as an example). 

Before setting down the sys tem of equations for  the theory of nonsteady-s ta te  combustion, we in t ro-  
duce dimensionless  var iab les .  If  u ~ is a cer ta in  value of the combustion velocity (for example, initial or  
average) corresponding to the p re s su re  p~ and flow rate G ~ under s teady-s ta te  conditions, then the dimen- 
s ionless  combustion velocity,  coordinates,  and time a re  wri t ten in the form 

u u o (u~ t ( 1 . 4 )  

where x and t a re  the no rma l  coordinates  and t ime. The tempera tu re  inside the powder and also the g ra -  
dient and tempera tu re  at the sur face  a re  represen ted  conveniently in the form 

0 -- T - -  To / T1 - -  To 
T1 ~ To ~ - - ~  ]~Z-, 8 - - - -  ( 1 . 5 )  

-- ' T1 ~ -- To 

where T~ is the surface temperature corresponding to the velocity u ~ pressure pO, and flow rate G ~ Finally, 
the dimensionless pressure and rate of tangential flow can be introduced as 

rl = p l p o, g _~__ G I G o (1o6) 

In these var iables  the problem of the theory of nonsteady-s ta te  combustion of a powder is formulated 
in the following way: to find the combustion velocity v0-)  f rom the thermal-conduct iv i ty  equation, taking 
account of the thermal  iner tness  of the condensed phase 

0-~ = ~ - v W (~ < 0) (1.7) 

with initial and boundary conditions 

0 ( L  0 ) = 0 0 ( ~ ) ,  0 ( - ~ ,  ~ ) = 0 ,  0(0,  ~ ) = o  (1.8) 

for the conditions that the relat ions 

v = v (% n,  g), o = ~ (% n,  g) (1.9) 

and also the dependence of the p r e s s u r e  and erosive flow on the time 

~1 = TI (~), g = g ('c) (1.10) 

are  specified, 

If the p rocess  of nonsteady-s ta te  combustion takes place in a chamber,  then instead of the lat ter  ex- 
p ress ions  differential  equations must  be wri t ten which satisfy thefunct ions ~? if)  and g(v) and also the c o r -  
responding initial conditions. In the case  of var iabi l i ty  of these functions throughout the volume of the cham-  
ber ,  the coordinates  of a point of the combustion surface also enter  into the problem. 

In solving a problem in this setting, together with the combustion velocity the nonsteady-s ta te  t em-  
pera ture  distribution in the powder thickness 0 (~, r )  must  be found. This function is a by-product  of the 
theory,  as it is  not essent ia l  for  solving problems of internal bal l is t ics  (excepting cer ta in  special  prob-  
lems).  The basic problem of the theory Of nonsteady-s ta te  combustion consis ts  in predict ing the behavior 
of the combustion velocity v f f )  for  the given relat ions ~ if) and g0") (or one of them). We shall t r ans fo rm 
the theory into a fo rm in which there  is no extraneous function of the two var iables  {from the point of view 
of internal ball is t ics) .  
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2. I n t e g r a l  E q u a t i o n s  f o r  N o n s t e a d y - S t a t e  

C o m b u s t i o n  V e l o c i t y  

Assuming that 0 =0 is to the r ight of the powder surface (~ > 0), we apply a Four i e r  t r ans fo rm to the 
thermal-conduct iv i ty  equation (1.7): 

0 

F (k, "~) = f 0 (~, "~) e - ~  d~ (2.  1) 
- - o o  

fo rm 
Taking account of the boundary conditions, the equation for  the t rans formed  function will have the 

with the initial conditions 

d__FF + (k ~ + ikv) F -~ ~ - -  v~  + i k~  
d~: 

(2.2) 

F (k, O) = f Oo (D e - ~  a~ 
~ o o  

(2.3) 

The l inear  equation (2.2) has the solution 

F (k, T) ----- f [~ (~c') - -  v (T') ~ (~') + ik{~ (T')] exp [ - -  k ~ ('r - -  ~:') - -  ikI] de + F (k, O) exp ( - -  k~'c - -  i kJ )  
0 

(2.4) 

where 

I = v (x") dv ~', ] = v (~") d~" (2.5) 
" r  0 

Applying the inverse  t r ans fo rm to Eq. (2.4): 

r(k,  )ei  dk (2.6) 
- - ? o  

we obtain 

- - o o  

There a re  three unknown functions of t ime in this express ion - the velociW, gradient,  and t empera -  
ture  at the surface.  Two relat ions (1.9) between them are sufficient to determine them and to find 0 (~, r ). How- 
ever ,  the relat ions between v, d, and ~ can be obtained if Eq. (2.7) is used at the point ~ = 0, i.e., 
at the powder surface.  For  this it must  be r emembered  that when ~= 0, the t empera tu re  undergoes 
a discontinuity (to the left it is equal to ~,  and to the right it is zero); substituting ~= 0 in Eq. (2.7), 
the root mean-square  of the equation at the same t ime must  be multiplied by two. We then have 

0 

exp - -  -~ 00 (u) exp ~ du 
~(~)=-~-~  ~ - v ~ +  2(~-~, )  4(~-~,)  V 7 - : 7  ' -F-g_~ 

Taking account also of the t rans ient  relat ions 

v = v (~,  n, g),  ~ = ~ (,~, n ,  g) (2 .9)  

we have a c losed sys tem for  determining any of the functions v, ~, or ~ with respec t  to the given relat ions 
(V) and gf f ) .  

tf  necessa ry ,  the t empera tu re  distribution in the powder at any instant of t ime also can be found f rom 
Eq. (2.7). 

The most  interest ing quantity is the combustion veloci .ty. If the explicit fo rm of the functions (2.9) is 
known, then it will be possible always to represen t  Eqs. (2.8) and (2.9) in the fo rm of a single integraI equa- 
tion for  v f f ) ,  the value of which at a given t ime will depend on the entire his tory of change of the external 
pa r ame te r s  ~? (~-) and gf f ) .  The equation is nonlinear,  as in the f i rs t  place the thermal  conductivity in the 
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star t ing equation is a nonlinear term,  corresponding to the convective flow of heat and, secondly the 
relat ions in Eqs. (2.9) in the general  case  are nonlinear.  

In solving problems of internal bal l is t ics ,  Eq. (2.8) is preferable  to the original sys tem of Eqs. (1.7)- 
(1.10) for the following reasons .  F i r s t  of all, there is a need for finding the appropriate  function of the two 
var iables  0 (~, T ). Obviously, this reduces  to a considerable simplification of the numerical  solution of 
problems which have no analytical solution. Fur ther ,  a number  of problems of nonsteady-s ta te  combustion 
theory can be solved by expansion in se r i e s  with respect  to a small  pa ramete r ,  say, with respect  to the 
amplitude of the harmonica l ly  varying p ressu re .  In this case, the use of the integral  equation leads to a 
considerable simplif ication of the calculations - the calculations will not involve a different kind of c o r r e c -  
tion to the s teady-s ta te  t empera tu re  distribution. Finally, the meaning of the equation obtained consis ts  
in that it c loses  the sys tem of equations of internal bal l is t ics  in which the p r e s s u r e  and combustion veloc-  
ity are  included in other  quantit ies.  When they are  constant or are  changing slowly (quasisteady-state con- 
ditions), the sys tem of internal bal l is t ics  equations is closed by the s teady-s ta te  relation u ~ (pO, To). In 
the nonsteady-s ta te  case  this relation must be replaced by the integral  relation (2.8) with the supplementary 
conditionsof Eqs. (2.9). Of course ,  the model of the theory in the form of Eqs. (1.7)-(1.10) can be used also 
for  the same purpose;  however,  in this case the sys tem of internal bal l is t ics  equations is considerably more  
complicated,  as the additional function of two var iables  is involved - the t empera tu re  within the bulk of 
the powder. 

3. L i n e a r  A p p r o x i m a t i o n ,  S t e a d y - S t a t e  C o n d i t i o n s  

o f  F l u c t u a t i n g  C o m b u s t i o n  V e l o c i t y  

Let us suppose that the p re s su re  is varying according to the harmonic  law 

~l----t ~-~hCOSO)~, ~ ] 1 ~ i  

We shall find in l inear  approximation the s teady-s ta te  conditions for the combustion velocity. This 
condition cor responds  to r ~ o ,  when the effect of the initial conditions disappears .  The t e rm of the inte- 
gral  equation which contains the initial t empera ture  distribution vanishes because of the factor  1/,fT. In 
l inear  approximation the method of complex amplitudes can be used, i.e., it is assumed that 

~l = I ~-  Tile ~ ,  v = i -~ r i d  ~': 

The following relat ions are obtainedfrom Eqs. (1.9) when g= const between small  cor rec t ions :  

k 5--v r ~ Jr~ (3.1) 
V l -  k ~ r - - t  (Pl ~- k ~ r - - I  ~]l, ~1 ~ k J c r _ t  T1 k ~ - r Z i  ~1 

( ) Jo . ,  ro ooo) 
k = ( T i  ~  ~ p, 

l / ar~~ 1 0 (~~ r~ o) 
Ix - -  (TiO __ To) ~ O - - ~  /To ' ~ O (p, To) ---- v r  - -  Hk 

The integral  I which occurs  in the equation has the form 

I = �9 -- ~" § I1, I1 =T~-v' (ei~ ~ _ ei~. ) 

If we substitute this express ion in Eq. (2.8) and retain only t e rms  of zero  or  f i rs t  order ,  we obtain 

l ol e  'jex,  
I ~ - ~ l e  i ~  = V---~ - ~ - ~  q ) l - -  V l - - ~ - T  4io)] - -  4i----~ 2io)( '~-- '~ ')  " 4 

The integrals  which occur  in this expression must be taken for the condition ~- ~ ~o. 
we have 

vl j_ vi 1 2 vl vl 
~l----- T l - - v i - -  2 " ~ ' 4 i ( ~ /  2 z ~ - t  2-~ JF, Z 

z = - !/2 + ~ + 1/4 

dr' 

After integration 

(3.3) 
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We ob ta in f rom Eqs. (3.1) and (3.3) the final re la t ion  between the ampl i tudes  of the combust ion veloci ty  
and the p r e s s u r e  [4]: 

,~+6z 
vl = l - -a+z( :+k/ io~)  ql (3.4) 

The ampli tude of the combust ion veloci ty  in the case  of a ha rmonica l ly  vary ing  tangential  s t r e a m  of 
gas can a lso  be  obtained quite s imi l a r ly .  Usually,  the effect  of the flow veloci ty  on the combust ion veloci ty  
s t a r t s  to be e x p r e s s e d  a f t e r  a cer ta in  threshold  value of the flow G k. We shall  suppose that the flow G 
changes ha rmonica l ly  but in such a way that i ts  min imum value exceeds  the threshold  value.  Then, 

and the exp re s s ions  for  v, ~p, and $ will have the prev ious  f o r m  so that the i r  unique values  will co r r e spond  
to the s t eady - s t a t e  cycle  for  a flow value of G ~ 

It  i s  obvious that  calcula t ions  s i m i l a r  to those above will give the re la t ion  between v 1 and gl, s i m i l a r  
to Eq. (3.4~: 

~,' § 5'z 
v: = i - - k + z ( r '  +k'/io)) g: (3.5) 

where  the p r i m e d  quanti t ies  a re  re la ted  with the der iva t ives  of the combust ion veloci ty  and the su r face  t e m -  
p e r a t u r e  by the ini t ial  t e m p e r a t u r e  and the tangential  flow at the point cor responding  to the s t e ady - s t a t e  
cyc le :  

k ' = ( T : ~  r' ~D-T~o /o' ~ o-#]-A-d-/w, 
{ ~176 ~ , ~ ' =  ~ 1 7 6 1 7 6  (3.6) 

~' = r, ~ - T o  k O~nC /r, o (~, ro) " = v ' r '  --- ~'k' 

The quant i t ies  k '  and v '  usually a r e  m e a s u r e d  in expe r imen t s  to inves t iga te  e ros ive  combust ion  under  
s t e ady - s t a t e  condit ions.  In o r d e r  to solve the p rob l em of nons t eady- s t a t e  blowing, data a r e  also n e c e s s a r y  
concerning the dependence of the sur face  t e m p e r a t u r e  on the init ial  t e m p e r a t u r e  and the tangential  flow. 

4.  L i n e a r  A p p r o x i m a t i o n ,  T r a n s i e n t  P r o c e s s  

Under s t eady - s t a t e  conditions the in tegra l  equation, in essence ,  need not be solved as the na ture  of 
the dependence of the combust ion  veloci ty  on t ime  is know~n. We shall  p roceed  now to the case  of solving 
the in tegra l  equation. We shall  cons ider  the combust ion p r o c e s s  with vary ing  p r e s s u r e  in l i nea r  a p p r o x i m a -  
tion: 

-~  i + ~: (~), 111 ~ I 

and we shall  take the init ial  t e m p e r a t u r e  dis tr ibut ion in the f o r m  

which c o r r e s p o n d s  to s t e a d y - s t a t e  conditions when p= 1. The combust ion veloci ty,  gradient ,  and t e m p e r a t u r e  
at the boundary differ  l i t t le  f r o m  unity, i .e . ,  

v = i  §  ( p = l  + q h ,  f f = i  +5:, v:~%~ffi~:<~i 

The in tegra l  equation (2.8) in l inea r  approximat ion  a s s u m e s  the f o r m  

AII ~ ' , f '  :)1 t + ~ 1 =  7 q - ( p t - v l - ~ - +  2 l t - -~ '  ~ exp 4 
0 

oo 

:J- ~ S [ t Yl (T - u)'] exp -- (u + "O2 cc 
0 

f i  ~-~ i vl (~') dT" ,  Jl~. iv i ( ,# ' )dT" 
r  0 

d~' 

(4.1) 
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After  in tegrat ion (in the t e r m  containing It, we change the o rde r  of integration),  we obtain 

X)x = ~ -  (P l -  ~k)exp 4 l f ~ _ ~  I --  err vld'd (4.2) 
o D 

If we subst i tute  the exp res s ions  for  ~1 and 91 by v 1 and r/1 f rom Eqs. (3.1), then we obtain the second-  
o rde r  Vo l t e r r a  in tegra l  equation 

6 j_ t ~ e-V, u F2k § r - -  2 (4.3) 
vl(v) = ?n,(T) ' - ~  ;~ --V~- L 2, v~(T- u) 

,v 

2r ~]i(T - -  u)  du4:--;- l - - e r f  v i (~- -~u)  du 
o 

Solving the equation in the no rma l  way, by a Laplace  t r ans format ion ,  we obtain the re la t ions  between 
the t r a n s f o r m s  of the ve loc i ty  vl(p) and the p r e s s u r e  ~? I(P) (here p is  the Laplace var iable) :  

v § 6z (p) ' l i  (P) ,  z (p)  = - -  i/~ ,-k ] / P  -k i/4 v, (p) = l -- k § (r + k / p) z (p) 

This r e su l t  was obtained e a r l i e r  [5] by solving s y s t e m  (1.7)-(1.10). 

(4.4) 
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